
Based on chapter 5 from Vince Buffalo's book "Bioinformatics Data Skills"
Comics are from https://imgs.xkcd.com/comics

Allows You to Keep Snapshots of Your Project
Helps You Keep Track of Important Changes to Code
Helps Keep Software Organized and Available After People
Leave

If you’re on OS X or Linux, git should be already installed (use
Homebrew (e.g., brew install git) or apt-get (e.g.,
apt-get install git), respectively, if you need to update).

On Windows, install Git for Windows. Finally, you can always visit
the Git website for both source code and executable versions of Git
as well as multiple learning resources.

Because Git is meant to help with collaborative editing of files, you need to tell Git who you are and what your
email address is. To do this, use:
git config --global user.name "Sewall Wright"

git config --global user.email "swright@adaptivelandscape.org"

Make sure to use your own name and email, or course.

Another useful Git setting to enable now is terminal colors:
git config --global color.ui true

GIT QUICK INTRO

Why GIT?

Installing Git

Basic Git

Git Setup

Creating Repositories: git init and git clone

http://gitforwindows.org/
https://git-scm.com/

To get started with Git, we first need to create a Git repository. There are two primary ways to it: by initializing
one from an existing directory, or cloning a repository that exists elsewhere. We will start with the first :)

First, let's create a new directory in your home directory (or your preferred location):
mkdir -p ~/EEOB563/labs

Now, go to this directory and initialize it as a git repository:
cd ~/EEOB563/labs

git init .

Although you’ve initialized the EEOB563/labs as a Git repository, Git doesn’t automati‐ cally begin tracking
every file in this directory. Rather, you need to tell Git which files to track using the subcommand git add .

But before doing it, let's check the status of our directory:
git status

The command will tell you that we are on branch master, that there were no previous commits ("Initial commit")
and that there is nothing to commit and no files in the direcotry.

Let's create a new file: echo # My brand new Git repository" > README.md

and check the status again: git status

We can see now that we have an untracked file. We use git add command to tell Git to track it:
git add README.md

Now Git is tracking the file and if we made a commit now, a snapshot of the file would be created.

Here comes a confusing part: git add command is used both to track files and to stage changes to be
included in the next commit. But to make it confusing, we have to add another file to our directory:
touch empty

Now, modify the README.md file (e.g., echo '**Git** can be confusing!' >> README.md) and
make a commit. If you compare your committed file and your current file (git diff) you'll see that the
previous version of the file has been committed! To include the latest changes, you'll need to explicitly stage
them using git add again. But we have to learn how to make a commit first!

Modify the file as explained above and commit the changes with the commit command:
git commit -m "First commit"

Tracking Files in Git: git add and git status I

Staging Files in Git: git add and git status II

Taking a Snapshot of Your Project: git commit

Notice, that we include a message in our
commits. If you try to skip it, a default text
editor (likely vi) will open. Also notice that
this message should be informative!
git diff shows you the difference

between the files in your working directory and
what’s been staged. If none of your changes
have been staged, git diff shows the
difference between your last commit and the
current versions of files.

Earlier, we used git add to stage the changes. There’s an easy way to stage all tracked files’ changes and
commit them in one command: git commit -a -m "your commit message" . The option -a tells
git commit to automatically stage all modified tracked files in this commit.

We already saw git diff above (there are obviously, many more options (try git help diff).

We can use git log to visualize the chain of commits. The strange looking mix of numbers and characters
after commit is a SHA-1 checksum. SHA-1 hashes act as a unique ID for each commit in your repository. You
can always refer to a commit by its SHA-1 hash.

When Git tracks your files, it wants to be in charge. Using the command mv to move a tracked file will
confuse Git. The same applies when you remove a file with rm . To move or remove tracked files in Git, we
need to use Git’s version of mv and rm: git mv and git rm .

You may have noticed that git status keeps listing which files are not tracked. As the number of files starts to
increase this long list will become a burden. To ignore some files (or subdirectories), create and edit the file
.gitignore in your repository directory. For example, we can add our empty file there:
echo "empty" > .gitignore or a set of fastq file you may have in your data directory:
echo "data/seqs/*.fastq" >> .gitignore . Here are some expamples of files you want to ignore:

- large files
- intermediate files
- temporary files
GitHub maintains a useful repository of .gitignore suggestions:

Seeing File Differences and Commit History: git diff and git log

Moving and Removing Files: git mv and git rm

Telling Git What to Ignore: .gitignore

https://github.com/github/gitignore/tree/master/Global. You can create a global .gitignore file in
~/.gitignore_global and then configure Git to use this with the following:
git config --global core.excludesfile ~/.gitignore_global

Recall that one nice feature of Git is that you don’t have to include messy changes in a commit—just don’t
stage these files. If you accidentally stage a messy file for a commit with git add , you can unstage it with
git reset .

Similarly, if you accidentally overwrote your current version of README.md by using > instead of >> , you can
restore this file by checking out the version in our last commit:
git checkout -- README.md .

But beware: restoring a file this way erases all changes made to that file since the last commit!

The basis of sharing commits in Git is the idea of a remote repository, which is a version of your repository
hosted elsewhere. Collaborating with Git first requires we configure our local repository to work with our remote
repositories. Then, we can retrieve commits from a remote repository (a pull) and send commits to a remote
repository (a push).

The first step of for us is to create a shared central repository, which is what you and your collaborator(s) share
commits through. Here we will use GitHub, a web-based Git repository hosting service. Bitbucket and GitLab
server hosted by ISU are other Git repository hosting service you and your collaborators could use (both
provide free private repositories).

Navigate to http://github.com and sign up for an account (if you don't have one). After your account is set up,
you’ll be brought to the GitHub home page, were you'll find a link to create a new repository. Follow it and
provide a repository name. You’ll have the choice to initialize with a README.md file (GitHub plays well with
Markdown), a .gitignore file, and a license (to license your software project). For now, just create a repository
named eeob563. After you’ve clicked the “Create repository” button, GitHub will forward you to an empty
repository page – the public frontend of your project.

GitHub uses SSH keys to authenticate you. SSH keys prevent you from having to enter a password each time
you push or pull from your remote repository. We create SSH keys on our computer (or any other computer you

Undoing a Stage and Getting Files from the Past: git reset and git checkout

Collaborating with Git: Git Remotes, git push, and git pull

Creating a Shared Central Repository with GitHub

Authenticating with Git Remotes

https://github.com/github/gitignore/tree/master/Global
http://github.com/
http://bitbucket.org/
http://git.linux.iastate.edu/
http://github.com/

are using) with the ssh-keygen command . It creates a private key at ~/.ssh/idrsa and a public key at
~/.ssh/idrsa.pub. You have an option to use a password, but you don't need to. However, it’s very important
that you note the difference between your public and private keys: you can distribute your public key
to other servers, but your private key must be never shared. Navigate to your account settings on GitHub,
and in account settings, find the SSH keys tab. Here, you can enter your public SSH key (remember, don’t
share your private key!) by using ` cat ~/.ssh/id_rsa.pub to view it, copy it to your clipboard, and paste
it into GitHub’s form.

Let’s configure our local repository to use the GitHub repository we’ve just created as a remote repository. We
can do this with:
git remote add origin git@github.com:your_name/eeob563

In this command, we specify not only the address of our Git repository at github , but also a name for it: origin.
By convention, origin is the name of your primary remote repository.

Now if you enter git remote -v (the -v stands for verbose), you see that our local Git repository knows
about the remote repository: git remote -v

origin git@github.com:username/zmays-snps.git (fetch)

origin git@github.com:username/zmays-snps.git (push)

You can have multiple remote repositories. If you ever need to delete an unused remote repository, you can
with git remote rm <repository-name> .

Let’s push our initial commits from zmays-snps into our remote repository on Git‐ Hub. The subcommand we
use here is git push . We’ll talk more about using branches later, but recall from “Tracking Files in Git: git add
and git status Part I” on page 72 that our default branch name is master. Thus, to push our zmays-snps
repository’s commits, we do this: $ git push origin master

To pull the commits from a remote repository, you use the git pull origin master command. Of
course pulling them makes sense if somebody else is contributing to the repository. Examples can be your
professor updating the course GitHub, you yourself working on two different computers, or several
collaborators working on a joint project. In fact, it's a good practice to always pull before you push !

Connecting with Git Remotes: git remote

Pushing Commits to a Remote Repository with git push

Pulling Commits from a Remote Repository with git pull

Merge conflicts

Occasionally, you’ll pull in commits and Git will warn you there’s a merge conflict. Resolving merge conflicts
can be a bit tricky, but the strategy to solve them is always the same:

1. Use git status to find the conflicting file(s).
2. Open and edit those files manually to a version that fixes the conflict.
3. Use git add to tell Git that you’ve resolved the conflict in a particular file.
4. Once all conflicts are resolved, use git status to check that all changes are staged. Then, commit

the resolved versions of the conflicting file(s).

It’s also wise to immediately push this merge commit, so your collaborators see that you’ve resolved a conflict
and can continue their work on this new version accordingly.

For complex merge conflicts, you may want to use a merge tool. Merge tools help vis‐ ualize merge conflicts by
placing both versions side by side, and pointing out what’s different (rather than using Git’s inline notation that
uses inequality and equal signs). Some commonly used merge tools include Meld and Kdiff.

